Samstag, 8. Juli 2017

Arthur Jensen on Mental Productivity:


A startling corollary of the multiplicative model of exceptional achievement is best stated in the form of a general law. This is Price’s Law, which says that if K persons have made a total of N countable contributions in a particular field, then N/2 of the contributions will be attributable to sqrt(K) (Price, 1963). Hence, as the total number of workers (K) in a discipline increases, the ratio sqrt(K) / K shrinks, increasing the elitism of the major contributors. This law, like any other, only holds true within certain limits. But within fairly homogeneous disciplines, Price’s Law seems to hold up quite well for indices of productivity — for example, in math, the empirical sciences, musical composition, and the frequency of performance of musical works. Moreover, there is a high rankorder relationship between sheer productivity and various indices of the importance of a contributor’s work, such as the frequency and half-life of scientific citations, and the frequency of performance and staying power of musical compositions in the concert repertoire. (Consider such contrasting famous contemporaries as Mozart and Salieri; Beethoven and Hummel; and Wagner and Meyerbeer.) 

If productivity and importance could be suitably scaled, however, I would imagine that the correlation between them would show a scatter-diagram of the “twisted pear” variety (Fisher, 1959). That is, high productivity and triviality are more frequently associated than low productivity and high importance. As a rule, the greatest creative geniuses in every field are astoundingly prolific, although, without exception, they have also produced their share of trivia. (Consider Beethoven’s King Stephen Overture and Wagner’s “United States Centennial March,” to say nothing of his ten published volumes of largely trivial prose writings — all incredible contrasts to these composers’ greatest works.) But such seemingly unnecessary trivia from such geniuses is probably the inevitable effluvia of the mental energy without which their greatest works would not have come into being. On the other hand, high productivity is probably much more common than great importance, and high productivity per se is no guarantee of the importance of what is produced. The “twisted pear” relationship suggests that high productivity is a necessary but not sufficient condition for making contributions of importance in any field. The importance factor, however, depends on creativity—certainly an elusive attribute. 

What might be the basis of individual differences in productivity? The word motivation immediately comes to mind, but it explains little and also seems too intentional and self-willed to fill the bill. When one reads about famous creative geniuses one finds that, although they may occasionally have to force themselves to work, they cannot will themselves to be obsessed by the subject of their work. Their obsessive-compulsive mental activity in a particular sphere is virtually beyond conscious control. I can recall three amusing examples of this, and they all involve dinner parties. Isaac Newton went down to the cellar to fetch some wine for his guests and, while filling a flagon, wrote a mathematical equation with his finger on the dust of the wine keg. After quite a long time had passed, his guests began to worry that he might have had an accident, and they went down to the cellar. There was Newton, engrossed in his mathematical formulas, having completely forgotten that he was hosting a dinner party. 

My second example involves Richard Wagner. Wagner, while his guests assembled for dinner, suddenly took leave of them and dashed upstairs. Alarmed that something was wrong, his wife rushed to his room. Wagner exclaimed, “I’m doing it!”—their agreed signal that she was not to disturb him under any circumstances because some new musical idea was flooding his brain and would have to work itself out before he could be sociable again. He had a phenomenal memory for musical ideas that spontaneously surfaced, and could postpone writing them down until it was convenient, a tedious task he referred to not as composing but as merely “copying” the music in his mind’s ear. 

Then there is the story of Arturo Toscanini hosting a dinner party at which he was inexplicably morose and taciturn, just as he had been all that day and the day before. Suddenly he got up from the dinner table and hurried to his study; he returned after several minutes beaming joyfully and holding up the score of Brahms’s First Symphony (which he was rehearsing that week for the NBC Symphony broadcast the following Sunday). Pointing to a passage in the first movement that had never pleased him in past performances, he exclaimed that it had suddenly dawned on him precisely what Brahms had intended at this troublesome point. In this passage, which never sounds “clean” when played exactly as written, Toscanini slightly altered the score to clarify the orchestral texture. He always insisted that his alterations were only the composer’s true intention. But few would complain about his “delusions”; as Puccini once remarked, “Toscanini doesn’t play my music as I wrote it, but as I dreamed it.”

Mental Energy

Productivity implies actual production or objective achievement. For the psychological basis of intellectual productivity in the broadest sense, we need a construct that could be labeled mental energy. This term should not be confused with Spearman’s g (for general intelligence). Spearman’s theory of psychometric g as “mental energy” is a failed hypothesis and has been supplanted by better explanations of g based on the concept of neural efficiency (Jensen, 1993). The energy construct I have in mind refers to something quite different from cognitive ability. It is more akin to cortical arousal or activation, as if by a stimulant drug, but in this case an endogenous stimulant. Precisely what it consists of is unknown, but it might well involve brain and body chemistry. 

One clue was suggested by Havelock Ellis (1904) in A Study o f British Genius. Ellis noted a much higher than average rate of gout in the eminent subjects of his study; gout is associated with high levels of uric acid in the blood. So later investigators began looking for behavioral correlates of serum urate level (SUL), and there are now dozens of studies on this topic (reviewed in Jensen & Sinha, 1993). They show that SUL is only slightly correlated with IQ, but is more highly correlated with achievement and productivity. For instance, among high school students there is a relation between scholastic achievement and SUL, even controlling for IQ (Kasl, Brooks, & Rodgers, 1970). The “overachievers” had higher SUL ratings, on average. Another study found a correlation o f +.37 between SUL ratings and the publication rates o f university professors (Mueller & French, 1974). Why should there be such a relationship? The most plausible explanation seems to be that the molecular structure o f uric acid is nearly the same as that of caffeine, and therefore it acts as a brain stimulant. Its more or less constant presence in the brain, although affecting measured ability only slightly, considerably heightens cortical arousal and increases mental activity. There are probably a number of other endogenous stimulants and reinforcers of productive behavior (such as the endorphins) whose synergistic effects are the basis of what is here called mental energy. I suggest that this energy, combined with very high g or an exceptional talent, results in high intellectual or artistic productivity. Include trait psychoticism with its creative component in this synergistic mixture and you have the essential makings o f genius. To summarize: Genius = High Ability X High Productivity X High Creativity.

Keine Kommentare:

Kommentar veröffentlichen